Transport vesicle uncoating: it’s later than you think

نویسندگان

  • Meg Trahey
  • Jesse C Hay
چکیده

Transport vesicle coat proteins play active roles in vesicle cargo sorting as well as membrane deformation and fission during vesicle biogenesis. For years, it was assumed that this was the extent of the coats' function and that the coats depolymerized immediately after vesicle budding, leaving the exposed fusion machinery free to find, dock, and fuse with the proper target membrane. Recently, however, it has become increasingly clear that the coat remains on transport vesicles during their post-budding life and in fact helps properly pair up the vesicle with its intended target membrane. These data have brought up urgent questions about exactly when vesicles do uncoat and how uncoating is regulated. Here, we summarize the latest round of evidence for post-budding roles for coats, including a few hints about how the uncoating process may be coupled to docking and fusion. We also speculate about the possibility of post-fusion functions for residual coats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi- derived COP-coated vesicles

The cycle of nucleotide exchange and hydrolysis by a small GTP-binding protein, ADP-ribosylation factor (ARF), helps to provide vectoriality to vesicle transport. Coat assembly is triggered when ARF binds GTP, initiating transport vesicle budding, and coat disassembly is triggered when ARF hydrolyzes GTP, allowing the uncoated vesicle to fuse.

متن کامل

A link between ER tethering and COP-I vesicle uncoating.

The yeast Dsl1p vesicle tethering complex, comprising the three subunits Dsl1p, Dsl3p, and Tip20p, is stably associated with three endoplasmic reticulum-localized Q-SNAREs and is believed to play a central role in the tethering and fusion of Golgi-derived COP-I transport vesicles. Dsl1p also interacts directly with COP-I subunits. We now show that binding of Dsl1p to COP-I subunits involves bin...

متن کامل

Stable clathrin: uncoating protein (hsc70) complexes in intact neurons and their axonal transport.

We have studied the organization of clathrin during its transport in axons. Using immunoprecipitation techniques we have confirmed earlier findings that clathrin is transported as part of slow component b, but we also detect small amounts of clathrin in fast component. As fast component is known to correspond to the transport of membraneous material, including coated vesicle membrane components...

متن کامل

Vesicular transport: the core machinery of COPI recruitment and budding.

Vesicular transport is the predominant mechanism for exchange of proteins and lipids between membrane-bound organelles in eukaryotic cells. Golgi-derived COPI-coated vesicles are involved in several vesicular transport steps, including bidirectional transport within the Golgi and recycling to the ER. Recent work has shed light on the mechanism of COPI vesicle biogenesis, in particular the machi...

متن کامل

Infantile esotropia: preferred postoperative alignment.

Wagner: This is a case of infantile esotropia. Six weeks following a 6-mm recession of the right and left medial rectus muscles in a 7-month-old infant with typical infantile esotropia findings and no vertical deviation at all, you find a residual esotropia of 12 prism diopters. Dr. Wang, what is your management at this time? Wang: Is the 12 diopters distance, near, or both? Wagner: We’ll say i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010